LETKF-based Ocean Research Analysis (LORA) in the Western North Pacific and Maritime Continent regions

Shun Ohishi¹, Takemasa Miyoshi¹, and Misako Kachi²

1: RIKEN, 2: JAXA

Introduction

Introduction – Data Assimilation –

Data Assimilation

Optimal combination of ocean simulation and obs. with statistical methods and dynamical systems theory

1. Introduction – Existing ocean reanalysis datasets –

(c.f. Balmaseda et al. 2015; Martin et al. 2015) ***3 (4)** Dimensional VARiational data assimilation ***KF:** Kalman Filter ***EnKF:** Ensemble Kalman Filter

- Not frequent assimilation in both EnKF-based systems
- No EnKF-based reanalysis datasets around the Pacific region

1. Introduction – Motivation –

- Ohishi et al. in prep
 - Construct an EnKF-based ocean data assimilation system

to assimilate satellite and in-situ observations

at a frequent interval of 1 day

• Explore an optimal setting for frequent data assimilation

→ Most suitable schemes: RTPP (α =0.8–0.9)+IAU+AOEI

*RTPP: Relaxation-to-prior perturbation (Zhang et al. 2004) *IAU: Incremental Analysis Update (Bloom et al. 1996) *AOEI: Adaptive Observation Error Inflation (Minamide and Zhang 2017)

- Motivation
- Create EnKF-based ocean research analysis datasets in the Western North Pacific (WNP) and Maritime Continent (MC) regions
- Evaluate accuracy of the analysis datasets

Datasets

2. Datasets

JCOPE2M(Miyazawa et al. 2017)
Model: POM (Mellor 2002)
Domain: Northwestern Pacific [108°–180°E, 10.5°–62°N]
Resolution: 1/12° × 46 σ-layers
Data assimilation: Multi-scale 3D-VAR
Assimilation interval: 2 days
Assimilation data: Satellite SST/SSHA, in-situ T/S, Biologging surface flow/T
Assimilation period: 2015.08.01 (JCOPE2) – Present

Observational SSH dataset: AVISO (Ducet et al. 2000)

Domain	Global	
Resolution:	0.25°	
Data assimilation:		Optimal Interpolation
Assimilation interval:		1 day
Assimilated data:		Satellite SSHA + MDOT (Maximenko et al. 2009)

Results of LORA-WNP

- RMSD vs. drifter buoy
 - RMSD vs. KEO buoy

3. Result – vs. Drifter buoy –

3. Result – vs. KEO buoy –

Results of LORA-MC

- SST and SSH climatology
 - RMSD vs. drifter buoy

4. Result

– SST –

4. Result

– SSH –

4. Result – vs. Drifter buoy –

Summary

Summary

We have constructed LETKF-based ocean research analysis (LORA)

in the Western North Pacific (WNP), Maritime Continent (MC) regions.

■ LORA-WNP

 \rightarrow LORA has same or better accuracy in almost variables compared with JCOPE2M.

- Surface flow from drifter buoys: AVISO > LORA > JCOPE2M
- T, S, U, V from the KEO buoy

T: LORA > JCOPE2M, S: JCOPE2M \geq LORA, and U & V: LORA \geq JCOPE2M

- LORA-MC
 - SST and SSH fields: Good correspondence with observations
 - Surface flow from drifter buoys

Open ocean: AVISO > LORA

Coastal region: LORA > AVISO

If you are interested in the LORA, please contact me. E-mail: shun.ohishi@riken.jp