YAMAGUCHI UNIVERSITY

Investigation on comparison and integration of microwave- and infrared-based precipitable water estimates

Keiji Imaoka

Center for Information Infrastructure, Yamaguchi University

JAXA PI Workshop January 18, 2022 Online

Backgrounds

Needs for high spatial- and temporal-resolution of total precipitable water (TPW)

- Study of cloud-precipitation system evolution
- Improvement of short-range forecast
- Correction of vapor delay in InSAR processing
- Objective
 - To gain knowledges to combine two estimates, through the comparison between AMSR2 and Himawari-8 AHI TPW.

Research Items

- Development of TPW retrieval algorithm from AHI infrared brightness temperatures.
- Comparison of TPW derived from AMSR2 and AHI.
- Investigation on integration of AMSR2 and AHI TPW estimates.

TPW Retrievals

- No single method can satisfy the needs. Each method has strengths and limitations.
- Microwave radiometer (all-weather)
 - Dual polarizations at vapor bands enable retrieval over polarized land surfaces (e.g., Kazumori and Kachi, 2018).
 - Tuned with GNSS and compared with RAOB TPW.
- GNSS (all-weather)
 - Accurate and high-temporal measurement (e.g., 5 min)
 - Worldwide, limited spatial density (Japan is rare case with around 1,300 stations to achieve 20 km interval).
- Infrared radiometer (cloud-free area)
 - Near Infrared (e.g., MODIS) provides accurate estimates in daytime but no future instruments.
 - Thermal infrared by geostationary satellites provides less accurate but high-temporal ability.

Thermal Infrared TPW Algorithm

Existing algorithms

 Most traditional one is so called Split-Window algorithm using two atmospheric window bands in 10-12 microns (based on small difference of water vapor effect).

Data assimilation-type algorithm (like for ABI).

RTTOV Simulation with JRA-55

AHI TPW algorithm

Empirical algorithm using SVR

- Support Vector Regression (SVR) trained with observation-based dataset.
- Updated cloud screening with Band 13 (10.4 μm) by 3 K (12 K) depression from monthly Tb maximum values at each hour and grid for ocean (land) (Choi and Ho, 2009).
- Explanatory variables include Band 13 Tbs, band ratios for other bands (e.g. Tb₁₆/Tb₁₃) except Band 8, and cosine of satellite zenith angle (SZA). Band 16 greatly improved the performance.
- Hyper-parameters adopted: regularization parameter of 1.0, kernel parameter of 1.0, and insensitive loss parameter of 0.1. 10-times cross validation was used.

Training/Validation Dataset

Training

Himawari-8 AHI L1 gridded data (distributed by EORC) GNSS-based TPW: Hourly (provided by EORC)

Validation

RAOB-based TPW: 00/12UTC (provided by EORC)

Dataset Difference

Results of Training and Validation

Training Dataset (GPS)

Validation Dataset (RAOB)

Results of Training and Validation

GNSS RMSE

RAOB RMSE

180°

AHI/AMSR2 TPW in Nighttime

July 15, 2018

AHI

AMSR2

Comparison with Other Dataset

GPS TPW (independent from training dataset)

- GPS observation and navigation RINEX data of GEONET and some IGS-registered stations.
- Post-processed into zenith tropospheric delay (ZTD) by RNX2RTKP application of RTKLIB program package.
 - Precise Point Positioning (PPP) mode.
 - Precise orbit and clock solutions by International GNSS Service (IGS).
 - ✓ PCV correction by ANTEX file by National Geodetic Survey.
- Conversion to TPW by using surface pressure and air temperature extracted from JRA-55 surface reanalysis.

AMSR2 Ocean/Land TPW

• AMSR2 standard (ocean) and research (land) products

GEONET GPS/RAOB Comparison

RAOB TPW [mm]

Comparison with GEONET

Comparison with GEONET

AMSR2 Comparison (Ocean + Land)

Comparison with Coastal GEONET

PWV [mm]

Comparison with Coastal GEONET

PWV [mm]

Comparison with Coastal GEONET

AMSR2 Comparison (Full-Disk Area)

19

Comparison with IGS stations

Summary

Summary

- SVR-based retrieval algorithm of AHI precipitable water was constructed based on observation-based training dataset and validated (around 6 mm RMSE against RAOB).
- Comparison with GEONET and AMSR2 show that:
 - ✓ AMSR2 TPW over land shows good performance.
 - Reasonable consistency around Japan area, but indicate the need of further improvement over dry land areas.

Prospects

Although further improvements are absolutely necessary, AHI precipitable water potentially complement the AMSR2 and GPS observations by its wide-area and high spatial and temporal resolution.