JAXA Joint PI Meeting (GCOM-W & AMSR3) 2022-01-17 (Mon) Online

Prediction of precipitation and streamflow by land-atmosphere data assimilation

PI: Kumiko TSUJIMOTO (Okayama Univ., Japan) CI: Hideyuki Kamimera (NIED, Japan)

https://monsoon.env.okayama-u.ac.jp/

Objectives

 Applying Data Assimilation of the AMSR2 observations to Numerical Weather Prediction and hydrological models to improve the prediction accuracy of precipitation and streamflow

Ground Precipitation Radar data analysis

Tropical Storm Rai in Sept 2016

o for atmospheric data assimilation

 $_{\rm o}$ to be used with WRF and hydrological model

1. Validation of the AMSR2/SMC product

- Evaluation of the observational error for data assimilation
- Cambodia, Australia, Spain
 - ← different land surface condition

2. Improvements of land-surface RTM

• Focusing on the dielectric model of wet soil

3. Effects on the prediction of precipitation

• By a mesoscale atmospheric model (WRF) and data assimilation

4. Effects on the prediction of stream-flow

Validation of the Model & observation errors AMSR2/SMC product

- How to evaluate the errors of the GCM input (NCEP-FNL), AMSR observation, and the WRF model?
 - Research Point: Quantification of each error characteristics to be used for land data assimilation

Validation of the AMSR2/SMC product

Evaluation of the observation error

- Cambodia
 - Humid, densely vegetated
 - field survey were conducted by ourselves in the past years
 - Past observation data are under analysis
- Spain & Australia
 - Semi-dry, sparse/short veg.
 - In-situ data were obtained from the <u>ISMN</u> <u>website https://ismn.geo.tuwien.ac.at/</u>

Validation of the AMSR2/SMC product

@Cambodia

2014-2020NCEP-FNL18 stationsAMSR-SMC

Validation of the AMSR2/SMC product

@Cambodia

NCEP-FNL AMSR-SMC

Soil Moist. Histogram @Cambodia

- Histogram
 - X: soil moisture
 - Y: frequency
- Only Descending Data (02:00LT) is used for AMSR2
- At each station, only the days on which AMSR-SMC data are available in 2014-2020 were used for plotting the histogram

Kumiko TSUJIMOTO (https://monsoon.env.okayama-u.ac.jp/)

In-situ obs. @Cambodia

Validation of the

AMSR2/SMC product

- In-situ obs. from 2010-2013
- measurements at 2, 5, 10, 20, and 30cm depth

lowland

Kumiko TSUJIMOTO (https://monsoon.env.okayama-u.ac.jp/)

1. Validation of the AMSR2/SMC product

- Evaluation of the observational error for data assimilation
- Cambodia, Australia, Spain
 - \leftarrow different land surface condition

2. Improvements of land-surface RTM

• Focusing on the dielectric model of wet soil

3. Effects on the prediction of precipitation

• By a mesoscale atmospheric model (WRF) and data assimilation

4. Effects on the prediction of stream-flow

II. RTM improvement **RTM for land surface**

Observed brightness temperature $T_{B_{obs}}$ by a satellite sensor (GCOM-W/AMSR2)

 λ : frequency, γ: incident angle

for land surface

Simulated brightness temperature T_{Bobs} by a forward model in LDAS-UT [Fujii 2005; Yang et al., 2007]

$$T_{B_{est}} = \begin{bmatrix} T_g \begin{pmatrix} 1 - \Gamma \end{pmatrix} e^{-\tau} \end{bmatrix} + \begin{bmatrix} T_c (1 - a)(1 - e^{-\tau})(1 + \Gamma e^{-\tau}) \end{bmatrix}$$

soil

- $\boldsymbol{\tau} = f(\boldsymbol{\gamma}, \boldsymbol{\lambda}, LAI)$, vegetation type) $a = f(\lambda)$
- $\Gamma = f(\gamma, \varepsilon, \text{ surface roughess})$
- $\varepsilon = f(\lambda, \theta, \text{ porosity}, \% \text{ sand}, \% \text{ clay})$
 - e: dielectric constant of wet soil Dobson model → Mironov model?

vegetation

canopy temperature T_c soil surfacé temperaturé T_a

Radiative Transfer Model (RTM) of the land surface

Dielectric property of wet soils

 Validation by laboratory experiments.

II. RTM improvement

for land surface

- Dielectric model
 - Dobson's model
 - Mironov's model

II. RTM improvement for land surface **Flowchart**

Create the <u>Look-Up</u> <u>Tables (LUTs)</u> for various conditions using the RTM forward model with Dobson and Mironov model, respectively

II. RTM improvement for land surface

@Australia

1. Validation of the AMSR2/SMC product

- Evaluation of the observational error for data assimilation
- Cambodia, Australia, Spain
 - \leftarrow different land surface condition

2. Improvements of land-surface RTM

• Focusing on the dielectric model of wet soil

3. Effects on the prediction of precipitation

• By a mesoscale atmospheric model (WRF) and data assimilation

4. Effects on the prediction of stream-flow

[Example 1]

Precipitation diff. [mm] in 5 days in <u>April</u> 2020 in <u>Cambodia</u>

Background error of the WRF model

• Estimated using the U.S. National Meteorological Center (NMC) method [Parrish and Derber (1992), Lin et al. (2017)]

III. Effects on

Precipitation

Figure 1. Schematic diagram of the National Meteorological Center (NMC) method showing the forecast error (η) between forecasts with 12 and 24 h leading times.

Case study for 6 days in April 2020 over Cambodia 12-h forecast (solid line) & 24-h forecast (dashed line)

1. Validation of the AMSR2/SMC product

• Cambodia, Australia, Spain

2. Improvements of land-surface RTM

• Focusing on the dielectric model of wet soil

3. Effects on the prediction of precipitation

• By a mesoscale atmospheric model (WRF) and data assimilation

4. Effects on the prediction of stream-flow

IV. Effects on Streamflow

Result

- (a) TB_H, TB_V
 ← obs. by GCOM/AMSR2
 → Used as inputs to RTM
- (b) Physical temperature (soil & canopy)
- ← Calculated by a basin hydrological model(WEB-DHM+SIMRIW)
- ightarrow Used as inputs to RTM

(c) LAI

- ← Calculated by WEB-DHM+SIMRIW & Obs. By MODIS
- ightarrow Used as inputs to RTM
- (d) Soil moisture estimates
- Calculated by WEB-DHM+SIMRIW
- JAXA product (with Dobson model)
- Calculated with RTM (Dobson model)
- Calculated with RTM (Mironov model)

Summary

- The method for the effective data assimilation of the AMSR2 observations to WRF for improving precipitation and streamflow predictability was examined through
 - 1. A study on the evaluation of the AMSR2 observation error (= AMSR-SMC product error), background error of the WRF model, and the error of the global reanalysis data (e.g., NCEP-FNL)
 - Quantifying the error statistics information to be used for land DA in WRF
 - They have regionality and seasonality?
 - Cambodia (land-surface heterogeneity & dense vegetation)
 ⇔ ISMN stations at Australia & Spain
 - Case study in Cambodia in the pre-monsoon season
 - A large difference is recognized in the southwestern mountainous region
 - Much wetter in NCEP-FNL than in AMSR
 - \rightarrow Effects on precipitation & streamflow prediction
 - 2. A study to improve the land-surface RTM which relates soil moisture and the AMSR2 brightness temperature
 - especially focusing on the wet-soil dielectric model: Dobson/Mironov model
 - aiming to improve the AMSR-SMC product accuracy
 - Replacement of the Mironov's model was suggested to be effective