Snow depth observation at Siberia site and applied research on passive microwave remote sensing

International Centre for Water Hazard and Risk Management (ICHARM) Public Works Research Institute (PWRI)

Hiroyuki Tsutsui

Snow depth observation at Siberia site

Snow depth observation at the seven Siberia AMSR2 snow depth validation site

Snow depth data has been acquired since 2002

Date

1.20

Date

29 Jan

Date

01 Oct

30 Nov

29 Mar

28 May

Cooperation and activities of the Institute for Biological Problems of Cryolithozone

Institute for Biological Problems of Cryolithozone Siberian Branch of RAS (IBPC)

1000	CONTR	A
A STR	P	- Contraction
A In		ECON A
13 martin	-	den.
H	0	The state

IBPC SB RAS 41, Lenina ave., Yaloutsk, Russia, 677000 Phone: •7(411-2) 33-56-00 Fax: •7(411-2) 33-56-12 E-mail: biolphocyson.ru WWW: bitp://bpc.yon.ru/ bitp://bpc.yon.ru/

http://ibpc.ysn.ru/

Current observation situation

Cancellation of expansion plan for observation framework due to COVID-19

New snow

Glanular snow

Depth hoar snow

2019.10-2020.5

Snow depth

Snow surface temperature

Soil surface temperature

2020.10-2021.5

Snow depth

Snow surface temperature

Soil surface temperature

Snow temperature gradient

Applied research on passive microwave remote sensing

Study on the estimation of snow depth on the ice sheet using the passive microwave remote sensing

Effectivity of the microwave radiative transfer model for snowpack on ice sheet López Moreno et al. (2016)

J. I. López Moreno, M. Olivera-Marañón, J. Zabalza, R. H. de Larramendi: Snowpack observations from a circumnavigation of the Greenland ice sheet (Spring 2014), CUADERNOS de INVESTIGATIÓN GEOGRÀFICA, Vol 42, No2, pp.369-381, 2016. INUIT WINDSLED http://greenland.net/windsled/expedition-diary/

Target points

	Site No	Project	Date		La	titude	Longitude	LAT	LON	Snow depth [cm]
No.1	4	INUIT WINDSLED	May 28	,2014	77 °	70'0 "N	38° 7'0 "V	V 78.1666	38.1166	120 - 180
No.2	11	INUIT WINDSLED	June 7	,2014	71 °	19'0 "N	32° 14′0 "V	V 71.3166	32.2333	180 - 240

Investigation and setting of the beginning date of snow accumulation based on the difference between 19 and 37 GHz(ATB)

8

Assumption of snow physical parameter

Current our microwave radiative transfer model

Single snow layer model

3 snow layer model

- Snow depth
- Snow layer thickness
- Snow temperature
- Snow particle size
- Snow density
- \bigcirc Snow wetness (=0%)
- \bigcirc Emissivity from ice sheet

Investigation and assumption of snow depth variation

Accumulated

Assumed

No.2

Investigation and assumption of snow layer thickness

Investigation and assumption of snow temperature

Investigation and assumption of snow particle size

Siberia snow observation data

Investigation and assumption of snow density

201 4/7/ 201 4/7/:

Snow density Sturm, M., and C. S. Benson (1997) $\rho = \rho_{max} - (\rho_{max} - \rho_{min}) \times exp(-volgr \times d)$

 ρ : Snow density ρ_{max} : Maximum density ρ_{max} : Minimum density

d : Snow days volgr :constant

Siberia snow observation data

No.1

No.2

Performance validation of RTM based on the brightness temperature

RMSE= 5.31 [K]

RMSE= 6.10 [K]

RMSE= 7.39 [K]

RMSE= 11.00 [K]

RMSE= 3.41 [K]

RMSE= 4.91 [K]

RMSE= 8.01 [K]

RMSE= 15.72 [K]

RMSE= 9.42 [K] 250.0

RMSE= 15.56 [K]

RMSE= 3.39 [K]

10.650GHz(v

RMSE= 7.27 [K]

250.0

170.0

150.0

130.0

110.0

230.0 210.0 190.0

Brightness

Estimation

—Observation

RMSE= 4.21 [K]

23.800GHz(v)

RMSE= 13.32 [K]

250.0

230.0

210.0

190.0

170.0

150.0

130.0

110.0

Brightness temp. [K]

—Estimation

-Observation

RMSE= 3.99 [K]

RMSE= 7.47 [K]

RMSE= 8.47 [K]

RMSE= 15.22 [K]

Horizonta

Applied research on passive microwave remote sensing

Agricultural drought assessment over West Africa using the Coupled Land and Vegetation Data Assimilation System (CLVDAS)

- 1914 : Widespread famine caused by drought occurred.
- 1968-73: One million people have died in Mauritania, Mali, Chad, Niger and Burkina Faso.
- 1982-84: Famine killed 3 million people in the Sahel region.
- 2017: Drought broke out in the Sahel region, damaging livestock and crops
- 2020: Drought caused more than 3 million people to face hunger in Burkina Faso.

CLVDAS [Coupled Land and Vegetation Data Assimilation System]

18

CLVDAS [Coupled Land and Vegetation Data Assimilation System]

19

Land surface model : Eco-HydroSiB

Water storage in root-zone

Eco-hydrological variables

Land surface soil moisture content

Vegetation water content

Root-zone soil moisture content

Normalized index (NIi) based on Z-score theory

Land surface soil moisture content

Vegetation water content

Normalized index (NIi) based on Z-score theory

$$NI_i = \frac{x_i - \mu}{\sigma},$$

Where, x_i is the variable on an arbitrary date (*i*), μ and σ are the average and standard deviation for x_i on an arbitrary date (*i*).

Agriculture in West Africa

📕 Major crop

Main crop in West Africa

Crop calendar

Agricultural calendar in West Africa

Source: Référentiel commenté des prix des produits agricoles du Niger, Août 1999

Comparison result between vegetation water content in September and pearl millet yield

24