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Introduction  

● Cloud properties (Cloud optical thickness; COT, cloud droplet effective radius (CDER) 

are globally retrieved by satellite observations using LUT itaration method (Nakajima and 

King, 1990).

● The method approximates clouds as a plane plate and is based on a 1-D radiative 

transfer calculation.

● But radiation propagate three-dimensionally. à Errors in cloud property estimation 

(Várnai and Marshak, 2002; Marshak et al., 2006)

● Multipixel approach (e.g. convolutional neural network) is effective if trained based on 3-

D radiative transfer (Faure et al., 2001; 2002; Iwabuchi and Hayasaka, 2003; Cornet t 

al., 2004) 

● However, the convolution kernel depends on various conditions (cloud thickness, 

inhomogeneity, wavelength, sun angles etc.), and it is hard to represent nonlinear 

relationships among them.

● Using deep convolutional neural network (CNN), Okamura et al (2017) showed the 

feasibility of more accurate COT and CDER estimation.
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Objectives

1. 3D radiative transfer-based COT retrieval using deep learning for SGLI

○ To develop a method for COT retrieval taking into account cloud inhomogeneity and 3D radiative 
transfer using DNN and 3D radiative transfer model

○ To evaluate the 3D and inhomogeneity effects by applying this method to the GCOM-C SGLI 
observation data

2. Statistical retrieval for cloud properties (COT and cloud top height) from 
Himawari-8/AHI

○ Using only IR channels for consistent observation regardless to sunlight

○ Full-disk data analysis with 2-km resolution (6000 x 6000 pixels) within ~10 minutes
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Approach
We train a deep learning model by simulation data based on physics models.

CNN Input
Visible channels (3 channels)

Solar direction (3 scalars)
Aerosol Optical Thickness (AOT)

Output
Cloud optical thickness

3D cloud & atmos.
3D radiative transfer 

model
Simulated/

observed images

Deep learning

COT

Okamura et al. (2017); Masuda et al. (2019)



Data and Method
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3D cloud data simulated by SCALE 
(Sato et al., 2014; Nishizawa et al., 2016)

Simulated SGLI multispectral images 

3D radiative transfer simulation by MCARaTS

Simulations were performed for various cloud cases and sun angles.



Data and Method
Examples of dataset (COT)

Input Image
Reflectances (VN3:443 nm, SW1:1050 

nm)

Input Vector

Solar zenith angle (0–70˚), 

Solar azimuth angles (0–360˚), 

Aerosol optical thickness (0.05–1)

Output Image Cloud optical thickness (0.5 - 300)

Resolution 1 km × 1 km

Image Size 24 × 24 pixels

Samples

Training：22,000 samples

Validation：4,880 samples

Test : 2,400 samples

Augmentation
Horizontal and vertical stretching, 

extinction scaling (x1/2–2), cloud height



Data and Method
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Training data Model

3D model dataset from 3D radiative 
transfer calculation

Modified U-Net 
(including convolution) 

1D model dataset from 1D radiative 
transfer calculation

PixNet
(pixel-by-pixel)

Ø The 1D model is for comparison and is designed to 
reproduce the current, operational algorithm.

Loss Function : Mean square error of log(COT)

Model description



CNN Model
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Convolution

Downsampling

Upsampling

Concatenation

• Solar direction
• Aerosol optical thickness

Optimizer : Adam,
Schedular : One-cycle policy
(Smith et al., 2017)
Loss function :  MSE of log(COT)



Results | evaluation
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RMSE (3D) RMSE (1D)

All 67.8 (%) 74.4 (%)

COT [0.5, 1) 193 (%) 218 (%)

COT [1, 10) 46.5 (%) 46.5 (%)

COT [10, 300] 12.3 (%) 15.1 (%)

Ø Where COT ≧ 1, 
RMSE (3D)  <  RMSE (1D).

Ø The solar zenith angle dependence
of the error is small for both models.

Solid line :  50 percentile
Dashed line : 25, 75 percentiles



Results | case study
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SZA = 62.8°

Ø For 1D model, cloud pixels on the sun side are overestimated and those 
on the opposite side of the sun are underestimated.



Results | SGLI
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Data :  October 2021 (1 month), 1 km resolution, Marine obeservation

COT (1D) – COT (3D)

Ø The 1D model estimates the COT about 20% smaller than the 3D model.
Ø Its underestimation tendency does not depend on the solar zenith angle.



Results | SGLI case study
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Ø Where the clouds are thick, COT (3D) > COT (GCOM-C)
Ø Some cloud pixels are overestimated at the edge of the clouds.



0 km

64 km

Himawari-8
CloudSat / CALIPSO

64
km

7 km

Cloud identification and property retrieval from Himawari-8
1
3

Model 
Stack of convolution: image to vector
MSE Loss Function + 0.5 × CrossEntropy Loss
Function
Adam optimizer and One-cycle policy scheduler

Input segment
Size: 32 × 32 pixel
Train: 1,318,119 segments
Test: 145,992 segments

Data period 4 months (Jan, Apr, Jul, Oct) of 2016 

Input Image

Brightness Temperature from 4 infrared bands,
[8.6, 10.4, 12.4, 13.3 μm]
Sea Surface Temperature, 
Surface Elevation

Input Vector
Air Temperature on 8 pressure levels,
Observation Time,
Satellite Zenith Angle and Amuzith Angle

Target Vector Cloud Top Height (CTH), 
Ice Cloud Optical Thickness (Ice-COT)

Resolution ~2 km, ~0.02˚  (60˚S – 60˚N) 
Collocation over one segment

Part 2



Case testing along a CloudSat/CALIPSO track

• The DNN result has the 

highest consistency with 

the DARDAR truth for 

both CTH and COT.

• The ICAS can be used as 

an reference for the full-

disk CTH estimation, as 

an alternative of the 

DARDAR truth.

• DNN has the combined
advantages of ICAS and 
JAXA on COT estimation, 
for thin and thick clouds 
respectively.

Part 2



Case testing over a full H8/AHI granule

• DNN can well reproduce the cloud systems, with specific values of CTH and COT.
• When compared to the DNN, the PBP model tends to underestimate high (>13km) and thick 

(!>50) cloud.
• One full-disk retrieval takes about 20 minutes with one processor.

DNN

PBP

JAXA’s

ICAS
(pixel-by-pixel)

(image-based)

Part 2



Conclusions

● We have developed a DNN approach for the retrieval of COT from a SGLI visible band 
and a SWIR band.

● The training and test data of the DNN are made by the 3D radiative transfer simulation 
whose input are 3D cloud fields from large-eddy simulations.

● Utilizing spatial features, our 3D method is able to estimate COT with higher accuracy
than the 1D (IPA; independent pixel approximation) retrieval.

● A case study using SGLI observation data shows that our method tends to estimate
larger COT by 20% on average than the IPA method and the operational COT 
retrieval method of GCOM-C/SGLI.

● Identification and property retrieval of cloud from Himawari-8/AHI is remarkably
improved by using image-based neural networks. DNN is indeed accurate with helps
by spatial features, which has not been explored well in traditional approaches. 
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