JAXA PI Meeting, Jan. 18, 2022

Remote sensing of three-dimensional clouds using multispectral measurements by SGLI

Hironobu Iwabuchi (PI), Hana Kato (Co-I)

Tohoku University

PI No.: ER2GCF204

Introduction

- Cloud properties (Cloud optical thickness; COT, cloud droplet effective radius (CDER)
 are globally retrieved by satellite observations using LUT itaration method (Nakajima and
 King, 1990).
- The method approximates clouds as a plane plate and is based on a 1-D radiative transfer calculation.
- But radiation propagate three-dimensionally. → Errors in cloud property estimation (Várnai and Marshak, 2002; Marshak et al., 2006)
- Multipixel approach (e.g. convolutional neural network) is effective if trained based on 3-D radiative transfer (Faure et al., 2001; 2002; Iwabuchi and Hayasaka, 2003; Cornet t al., 2004)
- However, the convolution kernel depends on various conditions (cloud thickness, inhomogeneity, wavelength, sun angles etc.), and it is hard to represent nonlinear relationships among them.
- Using deep convolutional neural network (CNN), Okamura et al (2017) showed the feasibility of more accurate COT and CDER estimation.

Objectives

- 1. 3D radiative transfer-based COT retrieval using deep learning for SGLI
 - To develop a method for COT retrieval taking into account cloud inhomogeneity and 3D radiative transfer using DNN and 3D radiative transfer model
 - To evaluate the 3D and inhomogeneity effects by applying this method to the GCOM-C SGLI observation data
- 2. Statistical retrieval for cloud properties (COT and cloud top height) from Himawari-8/AHI
 - Using only IR channels for consistent observation regardless to sunlight
 - ∘ Full-disk data analysis with 2-km resolution (6000 x 6000 pixels) within ~10 minutes

High accuracy, high computational efficiency

Approach

We train a deep learning model by simulation data based on physics models.

Data and Method

3D cloud data simulated by SCALE (Sato et al., 2014; Nishizawa et al., 2016)

3D radiative transfer simulation by MCARaTS

Simulated SGLI multispectral images

 $(\times 10^{-2} m^{-1})$

Simulations were performed for various cloud cases and sun angles.

Data and Method

Input Image	Reflectances (VN3:443 nm, SW1:1050 nm)
Input Vector	Solar zenith angle (0–70°), Solar azimuth angles (0–360°), Aerosol optical thickness (0.05–1)
Output Image	Cloud optical thickness (0.5 - 300)
Resolution	1 km × 1 km
Image Size	24 × 24 pixels
Samples	Training: 22,000 samples Validation: 4,880 samples Test: 2,400 samples
Augmentation	Horizontal and vertical stretching, extinction scaling (x1/2–2), cloud height

Data and Method

Model description

	Training data	Model
3D model	dataset from 3D radiative transfer calculation	Modified U-Net (including convolution)
1D model	dataset from 1D radiative transfer calculation	PixNet (pixel-by-pixel)

➤ The 1D model is for comparison and is designed to reproduce the current, operational algorithm.

Loss Function : Mean square error of log(COT)

CNN Model

Results | evaluation

	RMSE (3D)	RMSE (1D)
All	67.8 (%)	74.4 (%)
COT [0.5, 1)	193 (%)	218 (%)
COT [1, 10)	46.5 (%)	46.5 (%)
COT [10, 300]	12.3 (%)	15.1 (%)

- Where COT ≥ 1,RMSE (3D) < RMSE (1D).
- The solar zenith angle dependence of the error is small for both models.

Solid line: 50 percentile

Dashed line: 25, 75 percentiles

Results | case study

For 1D model, cloud pixels on the sun side are overestimated and those on the opposite side of the sun are underestimated.

Results | SGLI

Data: October 2021 (1 month), 1 km resolution, Marine obeservation

- The 1D model estimates the COT about 20% smaller than the 3D model.
- Its underestimation tendency does not depend on the solar zenith angle.

Results | SGLI case study

- ➤ Where the clouds are thick, COT (3D) > COT (GCOM-C)
- Some cloud pixels are overestimated at the edge of the clouds.

Part 2

Cloud identification and property retrieval from Himawari-8

Stack of convolution: image to vector Model

MSE Loss Function + $0.5 \times CrossEntropy Loss$

Function

Adam optimizer and One-cycle policy scheduler

Size: 32×32 pixel

Input segment Train: 1,318,119 segments

Test: 145,992 segments

4 months (Jan, Apr, Jul, Oct) of 2016 **Data period**

Brightness Temperature from 4 infrared bands,

[8.6, 10.4, 12.4, 13.3 µm] **Input Image**

Sea Surface Temperature,

Surface Elevation

Air Temperature on 8 pressure levels,

Input Vector Observation Time.

Satellite Zenith Angle and Amuzith Angle

Cloud Top Height (CTH), **Target Vector**

Ice Cloud Optical Thickness (Ice-COT)

Resolution $\sim 2 \text{ km}, \sim 0.02^{\circ} (60^{\circ} \text{S} - 60^{\circ} \text{N})$

Case testing along a CloudSat/CALIPSO track

- The DNN result has the highest consistency with the DARDAR truth for both CTH and COT.
- The ICAS can be used as an reference for the fulldisk CTH estimation, as an alternative of the DARDAR truth.
- DNN has the combined advantages of <u>ICAS</u> and <u>JAXA</u> on **COT** estimation, for <u>thin</u> and <u>thick</u> clouds respectively.

Case testing over a full H8/AHI granule

- DNN can well reproduce the cloud systems, with specific values of CTH and COT.
- When compared to the DNN, the PBP model tends to underestimate high (>13km) and thick $(\tau$ >50) cloud.
- One full-disk retrieval takes about 20 minutes with one processor.

Conclusions

- We have developed a DNN approach for the retrieval of COT from a SGLI visible band and a SWIR band.
- The training and test data of the DNN are made by the 3D radiative transfer simulation whose input are 3D cloud fields from large-eddy simulations.
- Utilizing spatial features, our 3D method is able to estimate COT with higher accuracy than the 1D (IPA; independent pixel approximation) retrieval.
- A case study using SGLI observation data shows that our method tends to estimate larger COT by 20% on average than the IPA method and the operational COT retrieval method of GCOM-C/SGLI.
- Identification and property retrieval of cloud from Himawari-8/AHI is remarkably improved by using image-based neural networks. DNN is indeed accurate with helps by spatial features, which has not been explored well in traditional approaches.

Publications (FY2021)

- Wang, X., H. Iwabuchi, T. Yamashita: Cloud identification and property retrieval from Himawari-8 infrared measurements by a deep neural network. Remote Sensing of Environment, 2022 (under review).
- Nataraja, V., S. Schmidt, H. Chen, T. Yamaguchi, J. Kazil, K. Wolf, G. Feingold, H. Iwabuchi: Segmentation-Based Multi-Pixel Cloud Optical Thickness Retrieval Using a Convolutional Neural Network. Atmos. Meas. Tech., 2022 (submitted).
- 岩渕 弘信, Wang Xinyue, 加藤 葉菜, 山下 尭也: 深層ニューラルネットを用いた衛星画像解析による雲と気象状態の推定 (Estimation of cloud and meteorological state from satellite image by deep neural network). JpGU Annual Meeting 2021.
- Wang, X., H. Iwabuchi, and T. Yamashita: Retrieval of cloud properties from Himawari-8 measurement with a deep neural network method. [A-AS04] Machine Learning Techniques in Weather, Climate, Hydrology and Disease Predictions. JpGU 2021.

References

- Cornet, C., Isaka, H., Guillemet, B., and Szczap, F.: Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: Feasibility study, J. Geophys. Res.-Atmos., 109, D12203, https://doi.org/10.1029/2003JD004186, 2004.
- Faure, T., Isaka, H., and Guillemet, B.: Neural network retrieval of cloud parameters from high-resolution multispectral radiometric data: A feasibility study, Remote Sens. Environ., 80, 285–296, https://doi.org/10.1016/S0034-4257(01)00310-8, 2002.
- Iwabuchi, H. and Hayasaka, T.: A multi-spectral non-local method for retrieval of boundary layer cloud properties from opti- cal remote sensing data, Remote Sens. Environ., 88, 294–308, https://doi.org/10.1016/j.rse.2003.08.005, 2003.
- Marshak, A., Platnick, S., Várnai, T., Wen, G., and Cahalan, R. F.: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes, J. Geophys. Res.-Atmos., 111, D09207, https://doi.org/10.1029/2005JD006686, 2006.
- Masuda, R., H. Iwabuchi, K. S. Schmidt, A. Damiani, and R. Kudo: Retrieval of cloud optical thickness from sky-view camera images using a deep convolutional neural network based on three-dimensional radiative transfer. Remote Sens., 2019, 11, 1962; doi:10.3390/rs11171962
- Nakajima, T. and King, M. D.: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory, J. Atmos. Sci., 47, 1878

 – 1893, 1990.
- Okamura, R.; Iwabuchi, H.; Schmidt, S. Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius of inhomogeneous clouds using deep learning. Atmos. Meas. Tech. 2017, 10, 4747–4759.
- Várnai, T. and Marshak, A.: Observations of three-dimensional radiative effects that influence MODIS cloud optical thickness retrievals, J. Atmos. Sci., 59, 1607–1618, 2002.