

Components of 'Cryosphere'

Focus of this research: the flat 'sea-ice' surface, including:

open-ocean melt-pond bare sea-ice snow-covered ice

The sea ice areas: Arctic, Sea of Okhotsk, Bohai Sea, Antarctica

Retrieve the surface albedo of sea ice

Spectral albedo
$$\alpha(\lambda) = \frac{F^+(\lambda)}{F^-(\lambda)}$$

Broadband albedo

$$\alpha_{i-j} \equiv \frac{F^{+}}{F^{-}} = \frac{\int_{\lambda_{i}}^{\lambda_{j}} F^{+}(\lambda) d\lambda}{\int_{\lambda_{i}}^{\lambda_{j}} F^{-}(\lambda) d\lambda}$$

 $\alpha_{\rm VIS}$ 300~700 nm

 $\alpha_{
m NIR}$ 700~2500 nm $\alpha_{
m SW}$ 300~2500 nm

Challenge #1: surface heterogeneity

Problem #1: insufficient spatial/temporal resolution

Satellite sensors & algorithms that can retrieve sea-ice albedo values

Albedo Product (sensor)	Description
APP-x (AVHRR)	25-km spatial resolution, monthly temperal resolution,
CLARA-SAL (AVHRR)	25-km spatial resolution; weekly temporal resolution, only contains data in southern of 80N

Challenge #2: reflection anisotropy

Reflectance properties are determined by the surface appearance

R $(\theta, \phi, \varphi, \lambda)$ The spectral bi-directional reflectance distribution function (BRDF)

Examples of anisotropic BRDF in nature

Reflection on snow / ice surface is anisotropic

Problem #2: surface BRDF estimations

Current estimation approaches

- 1. Require 16-day BRDF observations for retrieval of each day
- temporal variations
- 2. Only include BRDF of limited surface types or sea-ice conditions
- -- crude estimations
- 3. Need empirical relations to determine the surface type prior to BRDF-value assignments
 - errors cascade

Satellite sensors & algorithms that can retrieve sea-ice albedo values

Methodology	Product (sensor)	Problems
BRDF angular modeling	MCD43 (MODIS)	1
Analytical solution of RTM	MPD-based algorithm (MERIS, OLCI)	2, 3
LUT-based direct-estimation	Qu's (MODIS), Peng's (VIIRS) 8	2

Problem #3: decouples the atmosphere

relies on a look-up-table (LUT) to obtain linear relations between TOA radiance and surface albedo

Problem #4: not able to obtain the non-linear relations

A simple linear regression model

Assumptions that cannot be fulfilled:

- Lack of multicollinearity
- Linearity

Radiance values (esp. visible band) have a high correlation

An Accurate Radiative Transfer Model — correctly solve the 'forward' problem

1: A coupled RTM to solve the forward problem:

Angular radiance at TOA level
Spectral irradiance and albedo at the surface

Represent the optical properties of sea-ice / snow / water correctly, with their 'Inherent optical properties' (IOPs)

- absorption coefficients
- scattering coefficients
- scattering phase function

IOPs of all surfaces & atm.

Type	Parameter	Properties	Comments
bare ice	X_{ice}	h	sea ice thickness
		$V_{ m br}$	brine pocket volume fraction
		$r_{ m br}$	brine pocket radius
		$V_{ m bu}$	air bubble volume fraction
		$r_{ m br}$	air bubble radius
		$f_{ m bc,i}$	black carbon impurity fractions in ice
		X_{water}	physical properties of the ocean water beneath the sea ice layer
snow-covered ice	X_{snow}	$r_{ m e}$	effective grain size of snow particles
		$ ho_{ m s}$	snow density
		$h_{ m s}$	snow depth
		$f_{ m bc,s}$	black carbon impurity fractions in snow
		$X_{ m ice}$	physical properties of the sea ice below the snow-cover layer
		X_{water}	physical properties of the ocean water beneath the sea ice layer
ocean water	X_{water}	$h_{ m w}$	open-water depth
		$f_{ m chl}$	chlorophyll-a concentration
		$f_{ m CDOM}$	colored dissolved organic matter (CDOM) concentration
melt-pond	X_{melt}	h_m	melt pond thickness
		X_{ice}	physical properties of the sea ice below the melt pond layer
		X_{water}	physical properties of the ocean water below sea ice layer
aerosol	$X_{aerosol}$	$ au_{ m aero}$	aerosol optical depth in the atmospheric layer

Step 2: A comprehensive dataset that includes all conditions, and use any appropriate SciML models to solve the 'inverse' problem

Surface condition
Atmospheric condition
Geometry angle combinations

Use SciML models to solve the 'inverse' problem

— — with the Principal Component Analysis (PCA) as an example

Use SciML models to solve the 'inverse' problem

During SciML model training:

Inputs (from the synthetic dataset)

Randomly-generated sun-sensor geometry angles Seven TOA radiance from RTM computation

Multi-layer Artificial Neural Network

Ensemble models

Outputs:

Three broadband albedo

During deployment:

Evaluation on the retrieval model with aircraft measurements, with $\delta_t \leq 5h$

Evaluation on the retrieval model with aircraft measurements, with $\delta_t \leq 1.5h$

Evaluation on the retrieval model with aircraft measurements, on a cloud-free image

0.047 means absolute error, compared to the *in-situ* measurements

Compared to the MODIS-albedo product (MCD43)

Compared to the MERIS/OLCI-albedo product (MPD-based retrieval)

The retrieval method (coupled-RTM + SciML) can be applied to any optical sensor

Allows for sensor-to-sensor comparison of the retrieval results, or for increasing spatial/temporal retrieval-coverage

Summary

Developed an albedo-retrieval algorithm that provides

- Reliable retrieval results
 - Mean absolute error = 0.047
 - ullet Physically consistent with f_{ice} , r_e
- Market Better spatial-temporal resolution
 - Consistent with L1B radiance of the sensor
 - Up to 4 retrievals / day

- Sensor-agnostic results
 - SGLI, MODIS, VIIRS ...
- Better performance than all existing albedo products
 - MCD43 product
 - 'Melt pond detector'-based products

Zhou, Y., Li, W., Chen, N., Fan, Y., and Stamnes, K.: A sensor-agnostic albedo retrieval method for all sea ice surfaces: Model and validation, The Cryosphere (submitted).

