Development and validation of remote sensing algorithm for atmospheric aerosols by SGLI

M. Sekiguchi (TUMST)

T. Nakajima, A. Higurashi (NIES),

H. Takenaka, (Chiba-U)

Research History and this RA

	RA1-3	RA4	RA5	RA6	EORA2
Cloud shadow			100%		
2-channel ocean			100%		
Modified Kaufman land			→		
Kaufman land			\rightarrow		
MWP method (Multi-Wavelength and -Pixel method)			wer 📗	900	hm validation network
					Simultaneous retrieval of AOT and OC
SKYNET	Improvement, comparison with AERONET				

MWP method can be applied to complex terrain such as urban area where it is difficult with standard algorithm.

Objectives of this RA:

- Retrieved using MWP and Simultaneous method by SGLI and validated.
- Checked dependencies of bands, resolution of data.

Neural Network solver: EXAM is updated

EXAM:

The multi-wavelength version

 $0.550 \, \mu m$

 $0.339 \mu m$

 $0.377 \mu m$

 $0.441 \, \mu m$

 $0.546 \mu m$

 $0.672 \mu m$

 $0.865 \, \mu m$

 $1.630 \, \mu m$

 $0.470 \ \mu m$

 $0.510 \ \mu m$

 $0.639 \mu m$

 $0.856 \mu m$

 $1.609 \mu m$

The method of Neural Network is updated.

Speed: About 32000 times calculation /sec.

Accuracy: Error < 5.0E-4 at TOA reflectance. (each ch.)

EXAM Multi-wavelength version released.

13 wavelengths can be calculated with NN.

Applying MWPM to SGLI aerosol analysis: Kanto Area

Retrieved AOT Validation with SKYNET

Retrieved SSA Validation with SKYNET (Preliminary)

Applying MWPM to SGLI aerosol analysis: Northern Kyushu

Sekiguchi Lab.

MWP method (Land)

Retrieved AOT Validation with SKYNET

Compared to SKYNET:

The retrieved AOT using this method are comparable, but there are sometimes large differences between them.

MWPM: Wavelength dependency

 In this FY, we discussed the dependence of wavelength on the results of aerosol analysis.

6 bands (circle): 380, 443, 530, 675, 870, 1630nm

5 bands (triangle): except for 1630 nm

4 bands (square): 380, 675, 870, 1630nm (same in last year)

In this case,

- The result of 6 bands looks better than that of 4 bands.
- The result of 5 bands looks better in clean air cases (e.g., AOT < 0.15).

Those features might be dependent to areas and conditions.

Sekiguchi Lab. MWP method (Land)

SIRAW with MWP method

- ♦ SIRAW: Simultaneous Retrieval of Aerosol and Water-leaving radiance for ocean retrieval
- ♦ 8 parameters are retrieved simultaneously
- ♦ Correcting the surface transmission matrix to calculate the spectral water-leaving radiance
- ♦ Comprehensive Chlorophyll Inherent Optical Properties dataset
- ♦ Fine (water-soluble, dust-like and soot), Sea Spray, Dust particles are assumed

Components	Parameters	Formulation	For RT
Sea Water	Absorption	$a_{w}(T,S,\lambda) = a_{w}(T_{0},S_{0},\lambda) + (T-T_{0})\psi_{T}(\lambda) + (S-S_{0})\psi_{S}(\lambda)$	$\left\langle egin{array}{c} heta_{ m s}, \; heta_{ m v}, \; \phi, \ ext{ozone} \ heta_{ m s}, \; ext{RH} \end{array} ight angle$
	Scattering	$b_{w}(T,S,\lambda) = \frac{8\pi}{3}\beta_{w}(90^{\circ},T,S,\lambda)\frac{2+\delta_{w}}{1+\delta_{w}}$	
	Phase function	$\beta_{w}(\psi, T, S, \lambda) = \beta_{w}(90^{\circ}, T, S, \lambda)(1 + \frac{1 - \sigma}{1 + \sigma}\cos^{2}\psi)$ $a_{ph}(\lambda) = A(\lambda)[Chl]^{1 - B(\lambda)}$	a priori state vector Neural Network RT solver
Chlorophyll	Absorption	$a_{ph}(\lambda) = A(\lambda)[Chl]^{1-B(\lambda)}$	Observation Check No undate
	Scattering	$b_{ph}(\lambda) = 0.347[Chl]^{0.766}[\lambda / 660]^{v([Chl])}$	
	Phase function	Fournier–Forland phase function	Yes
Sediment	Scattering	$b_{sed}(\lambda) = b_s (550)(\lambda / 550)^{n_s} S$	Retrieved state vector
	Phase function	Fournier–Forland phase function	
CDOM	Absorption	$a_{v}(\lambda, [Chl]) = a_{v}(440, [Chl]) \exp(-S(\lambda - 440))$	OC solver nLw Chl-a

(colored dissolved organic matter)

➤ Developing an improved neural network solver to replace the radiative transfer model, the relative difference between neural network and Pstar model in the simulated satellite reflectance is generally from 0.1 - 0.3% among 340nm - 1630nm.

Comparisons of the retrieved AOT

The retrieved SIRAW-AOT are more consistent with the observation values from AERONET-OC at these sites.

Comparisons of the retrieved AOT from SIRAW (red circles) and the SGLI aerosol product (blue squares) over ocean with AERONET-OC observations. The black solid line represents the 1:1 line.

Comparisons of the retrieved nLw

Comparisons of the retrieved chl-a concentration

- At Kemigawa, the Chl-a retrieved using SIRAW is well-estimated and better than the SGLI Chl-a.
- At Ariake tower, the tendencies of SIRAW and SGLI product are roughly classified two types
 - overestimate in moderate conditions
 - 2. underestimate the Chl-a in turbid conditions.

The dashed and dotted lines are indicated the range of the standard and goal accuracy of the SGLI Chl-a product.

The retrieved results around the Ariake Sea

The white dots at the right bottom of the panels indicate the location of the AERONET-OC site.

The retrieved results around the Yellow Sea on Sep. 23. 2019

Conclusion

MWPM (land)

- Overestimations of aerosol parameters have been improved with increasing bands and tuning parameters.
- Sensitivity Test: SW03 band does not work well in clean air cases.

SIRAW (ocean)

- The retrieved SIRAW-AOT are more consistent with the observation values from AERONET-OC at these sites.
- The retrieved SIRAW-Chla tend to be underestimated in large Chla cases.

Future Work

- Apply for more cases and validate.
- Continue sensitivity tests for bands.
- Consider PL bands to MWPM and SIRAW method.