

フィヤレスエミュレータ利活用シンポジウム

研究開発プロジェクト概要① ワイヤレスエミュレータの概要と適用範囲

プロジェクトの背景

- ◆Society5.0、Beyond 5G時代は、これまで以上に多くの機器が通信を行う
 - ▶通信量の増大による周波数逼迫
 - ト相互干渉による周波数利用効率の劣化
- ◆新しい電波システムのデザイン、評価・検証を 低コストかつ短時間で実現することが困難
 - ▶利用する周波数は現状よりも高周波数帯
 - → 多数の無線機の調達が困難
 - ▶多くの機器を設置する場所の確保が困難、設 置コストが増大

サイバー空間上で電波システムを模擬することにより 低コスト、短時間で次世代システムを評価・検証

フィジカル空間

利用シーンに応じた電波伝搬特性

実無線機による 電波システムの実現 サイバー(仮想)空間で実時間動作できるようモデル化

実無線機をソフト ウェアにより実現 サイバー(仮想)空間

電波伝搬を仮想空間上で高精度に模擬

任意の電波システムを仮 想空間上で高精度に模擬

ワイヤレスエミュレータの概要

- ◆様々な電波システムを、仮想空間上で高精度かつリアルタイムにエミュレーション可能な電波模擬システムを開発
- ◆無線通信に関わる多様な事業者が、インフラ/システム/プラットフォーム/アプリケーション/サービスなどのデザイン、評価、検証が可能となるテストベッドを提供

ワイヤレスエミュレータの要件と適用範囲

- □汎用的なプラットフォーム、処理エンジンを用いて構築されていること
- □3D地図、地形データを建物の材質等も含め取り込むことができること
- □実環境に近い電波伝搬環境がエミュレーションできること
- □実無線システムで採用されている無線通信システムがエミュレーションできること
- □実無線機と連携・協調動作できること

想定するユースケース

システム	環境	想定シナリオ
5G/B5G システム	屋内 屋外	B5G実現のための 新規要素技術検証
ドローン/ ロボット	屋内 屋外	遠隔インフラ点検 防災・減災・救護活動支援
ITS	屋外	無線通信とセンサを融合した 自動運転等を志向した統合型ITS
スマートオフィス	屋内	スマートオフィス高度化のための無線通信の 利活用
スマート 工場	屋内	人・センサ・機械混在環境での電波環境最適 モデリング
次世代 スマートメータ	屋内屋外	スマートシティ、スマートメータ実現のための 新規要素技術検証

想定する利用者

心にクる小川口			
利用者	利用イメージ		
通信 キャリア	・Society5.0時代の社会基盤を支えるB5Gを実現する通信方式及び通信ネットワークの設計・評価・検証・実運用が想定される環境を再現し、電波伝搬の見える化による最適な基地局配置等の検証		
サービス プロバイダ	・サービス拡大に伴うインフラ側のスケーラビリティテスト, サービス継続の限界条件などの技術的検証		
装置 ベンダ	・自社の無線機器を用いた新規システム設計, 新規サービス 導入のための大規模検証		
行政	・電波免許取得のための電波干渉検討等の計算 ・干渉回避・共存のためのシミュレーション ・国際標準化のためのデータ取得,通信方式比較		

本研究開発の成果の一部は、総務省の委託研究開発(JPJ000254)「仮想空間における 電波模擬システム技術の高度化に向けた研究開発」により実施した成果を含みます。