International Workshop on Vegetation Lidar and Application from Space May 26, 2017

MOLI Science Plan

Forestry and Forest Products Research Institute Yasumasa Hirata

Current Global Issues

Contributions to Global Issues through GEOSS

Climate Change

2020

Rio to Tokyo

2020

Nations Unies

Conférence sur les Changements Climatiques 2015

COP21/CMP11

Agenda 21

森林原則声明

1992

COP 3 in UNFCCC

Kyoto Protocol

1997

- Reduce their GHG emissions by 5.2% on average for the period 2008-2012, relative to their annual emissions in a base year, usually 1990
- Rate of Emission reduction: EU 8%, USA 7%, Japan – 6 %

Techniques and Networks of Global Carbon Cycle Observation at Various Time and Spatial Scales

Ciais et al.,2014

Land-to-atmosphere CO₂ Flux

REDD-plus

© 2011 Europa Technologies US Dept of State Geographer © 2011 MapLink/Tele Atlas © 2011 Google

ポリピア

会ラバス

ブラジル

☆ブラジリア

5°48'59 54"S 28°40'25.55"W 標高-5416 m

N

+

高度 5530.15 km 🔾

Woody Island Pattle Island

Passu Keah 西沙諸島

ペトナム

Thitu

N

Namy Sin Co

© 2011 Europa Technologies © 2011 Tele Atlas © 2011 Google US Dept of State Geographer

10°23'13.90″N 111°44'51.26″E 標高 - 3561 m

カンボジ

レンペン

a

金バシコク

多个湾

00

a. ()

高度 1631.36 km (

パンダルスリブガワン ブルネイーダルサラーム国

Kalimantan Timur

マカッサル海峡

Kalimantan/Barat インドネシア

i.

Kalimantan Tengah

© 2011 Europa Technologies © 2011 Tele Atlas © 2011 Google Data SIO, NOAA, U.S. Navy, NGA, GEBCO Sulawesi Tengah

18-3

セレベス海

1 57

Google.

N

モルッカ海

Concept of Emission Reduction in REDD+

year

IPCC basic equation to estimate GHG emissions from activities related with LULUCF sector

Danilo Mollicone, FAO

Forest Carbon Stock using Remote Sensing and Field Survey

Idea of Forest Degradation

Lesson and Learn from GLAS Mission

Waveform of LiDAR data in a mature forest

- Maximum tree height derived from LiDAR data was about 43 m.
- Intensity has a peak around 23m height and it means canopy layer.

Forestry and Forest Products Research Institute

Waveform of LiDAR data in a degraded forest

- Maximum tree height derived from LiDAR data was about 42 m.
- Intensity was relayively weak through all layers.

Forestry and Forest Products Research Institute

Waveform of LiDAR data in a rubber plantation

- Maximum tree height derived from LiDAR data was about 23 m.
- Intensity has a peak around 15m height and it means canopy layer.

Growth and Degradation of Forest from Waveform changes

Objectives and Products of MOLI

Samples (million)	Tropical America	Tropical Africa	Tropical Asia	Total
Available	13.2	18.2	11.8	43.2
After screening	2.3	2.5	0.7	5.5
Percent % used	17.4	13.8	5.9	12.7

Reduction of Topographic Effect

Principle of determination for slope & azimuth angle using multi-footprint

	True value	Number of footprints /one pulse		
		4	2	
Azimuth angle	135.00 deg.	135.33 deg.	135.00 deg.	
Slope angle	30.00 deg.	30.03 deg.	29.80 deg.	

Saturation for large biomass in SAR observation

P-band,HV

from ESA report assessment "BIOMASS", 2008

ALOS L-band, HV

ISS ground tracks

A chain of islands including Borneo and Celebes and Java and Sumatra in Southeast Asia

(a) one-day orbit

(b) one-month orbit

(c) one-year orbit

Estimation of Aboveground Biomass(AGB) by Lidar

AGB regression model

(e.g. in Sabah, Malaysia)

 $AGB = 3.75h_{10}^{0.742}h_{25}^{-2.864}h_{50}^{3.406}h_{75}^{-3.364}h_{90}^{-0.170}$

, where h_{10} , h_{25} , h_{50} , h_{75} , h_{90} are corresponding to the point (height) in the waveform at which the given energy percentile is reached.

Requirement of Observation Parameters and accuracies

Parameters	Coverage	Uncertainties	Remarks	
Forest height	Global	1m-3m, or 10%-20%	For biomass estimation	
	Regional	1m-3m, or 10%-20%	For forest inventory	
	Local	~10%	Site quality estimation	
Forest structure	Global	Three layers ~5m-10m	Contribution to biomass, Forest monitoring	
	Regional	Three layers ~5m-10m	Disturbance, Monitoring, REDD++	
Forest biomass	Global	204/5-2	Carbon stock	
	Regional	~20U/IIa	Forest inventory	
Topography	Global	<2m	DEM	

Plan for product development

Level 0

Level 1: Full-waveform product

Full-waveform product will be generated from Level 0 data. This product will include full-waveform data and information about location, attitude of platform, and, time.

Level 2 : Tree height product (ISS nadir only)

Tree height will be estimated by analysis of full-waveform product. This product will include tree height data and information about location, attitude of platform, and,

t pe

High level product : Global tree height map/Global biomass map

High level product will be generated by fusion use of tree height product and other satellite data such as imager and SAR.

Assumed User Waveform analyst Tree height map maker Elevation map maker Carbon cycle modeler Forest monitor Tree height map maker Carbon cycle modeler Forest monitor Policymaking and contribution to

2020

Thank you for your attention!